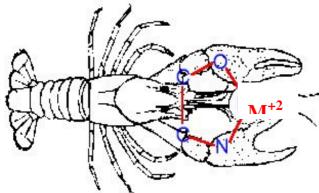


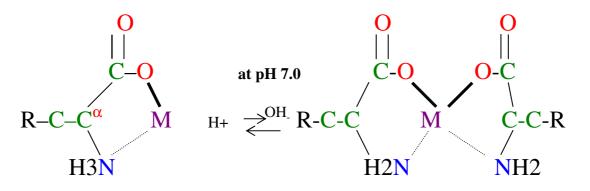
E-Mail : tmc@tmc.co.kr Homepage : http://tmc.co.kr/


Chelation

A simple amino acid anion is a potential bidentate ligand which may coordinate to a transition metal ion through the amino lone pair of electrons and the carboxylate oxygen lone pair of electrons. Amino acids which possess a side chain containing a potentially coordinating atom (N, O, or S) may act as tridentate ligands. Species which can coordinate to one metal ion with two or more atoms simultaneously are called *chelates*. The origin of this term is described below.

vo or more nuclei that are good re potential chelate ligands. The vas first applied in 1920 by Sir gan and H.D.K. Drew [Morgan, stated: "The adjective chelate, he great claw or chela (*Greek:* lobster or other crustaceans, is the caliper-like groups which b associating units and fasten to

the central atom so as to produce heterocyclic rings." This term is generic for all ligands which have at least two atoms coordinated to the central metal ion. The terms *bidentate*, tridentate, etc., describe specifically ligands which have two, three, etc., coordinating atoms. The angle described by the (chelate atom - metal cation - chelate atom) trio is called the bite angle. The lobster Figure was found on the coordination chemistry material prepared by Dr. R.J. Lancashire in the Chemistry Department of the Mona Campus of the University of the West Indies.



 M^{+2}

o acid can act as a bidentate g a five-membered heterocyclic ole metal cations. In this Figure, n shown is one of the carboxylic gen atoms; and the nitrogen atom nino group. The carboxylic group onor *only* when it is in its tate, -COO. (*I.e.*, it does not en it is in its neutral state, -

COOH.) The amino nitrogen coordinates only when it has a lone pair of electrons, as it does in the -NH₂ state. (*I.e.*, it cannot coordinate when the amino group of the amino acid is in its protonated state, $-NH_3^+$.) Note also that the carbon atom of the carboxylic acid group is part of the ring, as is the alpha-carbon atom of the amino acid. A beta-amino acid, such as betaalanine, would form a six-membered heterocyclic ring with a metal cation.

The Figure above indicates that an *alpha*-amino acid forms a fivemember chelate ring with a transition metal cation. A *beta*-amino acid would form a six-member chelate ring. As has been observed for organic compounds, five- and six-membered rings are especially stable. The coordination properties of transition metal cations allow for more than one amino acid anion to coordinate, as discussed in the next section.

Binding Sites 1. N-terminal NH2⁺ group

2. C-terminal COO⁻group